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Boys and Handy [1] have discussed the solution of the bivariational equations with restricted 
numerical integration. One of the weaknesses of the method was that in the numerical summations 
over points, some points arose with ri~ = 0 and non-zero weights. This makes the method quite 
impractical for the Schrodinger Hamiltonian (because of the singularity at rij = 0), and it cannot be 
advantageous for the transcorrelated Hamiltonian C ~ HC because there will be some discontinuous 
higher derivatives at r , j=0. Here it is shown how the symmetry of cylindrically symmetric 
molecules can be used to eliminate such points, without losing any of the advantages of the overall 
method, such as the convergence of the eigensolutions. It is also shown how the primary numerical 
integration points (z~, r~) may be chosen in any calculation such that each is associated with an 
equal amount of one-electron density. The choice of the angular coordinates are governed by the 
removal of the r ~ = 0  points and maintaining the natural orthogonality between orbitals of 
different symmetry types. The method has been programmed and found to be practical, although 
no new molecular calculations have yet been performed. It is to be hoped that these points will give 
a basis for new transcorrelated calculations on diatomic molecules. 
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1. Removal  of  R~j = 0 Contributions 

B o y s  a n d  H a n d y  I l l  h a v e  d i s c u s s e d  t he  s o l u t i o n  

e q u a t i o n s  w i t h  r e s t r i c t e d  n u m e r i c a l  i n t e g r a t i o n  

(~t'rQIH - WI ~ Y~4~s) = 0 (1) 
s 

Here 7' r and ~s denote Slater determinants and H may denote either the 
Schrodinger Hamiltonian H~ or the Transcorrelated Hamiltonian C-1H~C, 
and Wis the associated eigenvalue. Q denotes the restricted numerical integra- 
tion operator M ~t M 

Q = ~i hi ~ (rl' Ri) ~ hi6 (r2, R j) ... Z h ,6  ( rs ,  R , )  (2) 
j u 

where (hl, Ri) are a set of M weights and points in 3 dimensions, and N is the 
number of electrons. 

The above authors have underlined the advantages of working with Eq. (1): 
firstly, the error in W is proportional to /~, the least squares error of the basis 
set @~ to the true eigenfunction, whatever the functions ~r and Q; secondly, 

*This paper was presented during the session on numerical integration methods for molecules 
of the 1970 Quantum Theory Conference in Nottingham. It has been revised in the light of the 
interesting discussion which followed. 

of  t h e  b i v a r i a t i o n a l  
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a Slater determinant Projective Reduction theorem can be derived for the 
evaluation of the matrix elements, on a parallel with the standard theorem for the 
accurate determination of these elements (when Q--1) through 6-dimensional 

, 
integrals. Thus for a two electron operator F, (~P,QI~Fijlrb~) is a linear 
combination of sums S of the form ~J 

M M 

S = ~ihi ~hj~*a (R,)~p~ (R j) F(Ri, R j) q~c(Ri) cPa(Rj) (3) 

where ~p and q~ are one electron orbitals occurring in ~r and ~s, and 
satisfying 

~ hi~* (R,) 99c(Ri) = ~5c (4) 

This procedure was successfully used in calculations with the transcorrelated 
method on LiH. 

In the sum S, it will be noticed that i equals j M times and so Rij=O 
occurs M times with non zero weights h 2, thus making the method particularly 
unsuitable for operators which have singularities or discontinuities at rij= O. 
It is therefore impossible to work with He, because of r~ 1, and C-1HsC may 
give difficulty because there are certainly discontinuities in higher derivatives at 
rij=O. This is particularly relevant in the present circumstances when the 
proportion (I/M) of these points to the total points is quite significant, M being 
small (say 100). 

Here it is shown how the symmetry of cylindrically symmetric molecules can 
be used to remove these undesirable points Ri = R j, through a slight redefinition 
of Q, the above mentioned advantages still holding true�9 Essentially the method 
depends upon the fact that if 

R,=(z,,r,,O~)and k ( r , , O , + k 2 )  Ri = zi, , k = 1, 2 .... N (5) 

then whenever (4) holds, so also does 

, k ~hi~P, (Ri) ~pc(R~) = 6ac (6) 

because of the symmetry of the orbitals ~p and q~ around the z axis. If the 
operator Q is therefore replaced by the (symmetric) operator 

~_l N! [M M M ] 
Q = Pk hib(rt, R k~) ~hjb(r 2, R; ) hub(r N, R, ) (7) 

�9 �9 j 

where Pk runs over all permutations k of 1, 2, 3... N, then a Slater determinant 
Projective Reduction theorem can still be derived, because its derivation 
depends upon the use of the orthogonality conditions Eq. (6). In this case it 
appears that S takes the form 

N M M 
S = N - I ( N  - 1) -1 E Eh, EhJ~P * (Rt) ~ (R~) F(Rt, R~) q,~(Rt) q~d(R~) (8) 

2:#/1 i 2 

where it is immediately noticed that no points ever arise with R,j = 0. 
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2. Further Substantial Reductions through Symmetry 

The cylindrical symmetry can be further used to simplify S. [-For expediency, 
it is assumed here that the orbitals are only of a type and that F is a function 
of z, r and r~j]. It is certainly possible to put all the original points on 0 = 0, that 
is 0i = 0, - Eq. (4) will still hold for a type orbitals, (for higher symmetry types 
this is not so, but it is simply corrected by associating with each (zi, r~) a certain 
number of 0 points equally spaced around the z axis). Furthermore, for each 
term in S, it is always possible to rotate the 0 axis such that all the Ri points lie 
on 0 = 0, without changing its value, again because of the symmetry. These 
further arguments give S in the form 

N M 

S = N - t ( N  - 1) - t  ~ ~hihjq~*(R ~ ~p*(R~ -~) F(R ~ Ry -~) ~pc(R ~ (Pd(Ry -z) (9) 
where ~* ~ i~ 

2 2 n \  )W) 
The operator F will have different values for different values x)@l V 

m0d(n), 
k 

so in effect S is a sum of pM 2 quantities, where p is the number of these distinct 
values. The method is simply extended, as indicated above, to the case when 
~o and (p are of higher symmetry types, m~ and m 2 say, where the relation (4) 

m l  m2 takes the form 2 hilPa (Ri) q~ ~ (Ri) = (~ac(~rn,mz ( 1 0 )  

i 

For a calculation on HF involving a, n, ~ occupied and excited orbitals, which 
uses all the above procedures, thus maintaining the advantages of the restricted 
integration bivariational method Eq. (1), yet has no Rij=O points and also 
obeys Eq. (10), S is a sum of 14M 2 finite quantities. [Part  of the theory used here 
will be given in detail in a forthcoming publication [2]]. 

3. Selection of  the M Basic Points R ~ 

It will be assumed for the molecules under consideration that an approximate 
one electron density function Q(z,r) is known, from an SCF calculation or 
otherwise. The idea here is to divide the 2 dimensional space (z, r) into regions 
such that each point is associated with an equal amount of electron density. 
Such a method can be described as follows: 

Let f ( z ) =  ~ 2nrQ(z,r)dr and A =  ~f f ( z )dz  (11) 
0 - - o O  

First divide the z axis as follows by choosing ~i such that 

.( f ( z ) d z = ( i / L ) A  and zi= 1/2(~i+~,i_O (12) 
- oo  

where i = 1, 2 . . . .  L, and L ~- M ~, M being the total number of points required. 
For  each zi point now determined, the values r~ associated with it are similarly 
selected. Let 

.( 2n r 0 (zi, r) dr = (j/L) f (zi) and �9 _ 1 ~'j ~'j - 1 ~- - z ( r i+r i  ) (13) 
oo 

for j =  1,2 . . . .  L. 
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As the problem here is only 2 dimensional, all the integrals in the above 
expressions can be accurately evaluated numerically, using a sufficiently large 
number of points. Thus in practice _ 0% fro and ~ are each replaced by some 
suitably large value~ The L 2 ( -  ~ M) points (z~, ~) selected by this procedure will 
each have equal weight, the 1-electron density space having been divided into 
L 2 equal areas. In a'typical transcorrelated calculation on HF, it is anticipated 
that M-~ 144, L ~- 12. 

4. Conclusion 

The above procedures have been programmed for diatomic molecules, and 
have been found entirely practical. The increase in the number of 6 dimensional 
points from M 2 to p M  2 does not increase the time factor by p, because of 
many simplifying details - and in any case, this factor is surely warranted 
because of the removal of the R 0 = 0 points. 
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